Package index
-
getEmbeddingMetrics() - Compute embedding-based metrics
-
getGraphMetrics() - Compute graph-based metrics
-
getPartitionMetrics() - Compute partition-based metrics
-
getFuzzyPartitionMetrics() - Compute external metrics for fuzzy clusterings
-
getSpatialExternalMetrics() - Calculate Spatial External Metrics
-
getSpatialInternalMetrics() - Compute internal metrics for spatial data
Functions for individual metrics
These are some useful functions for calculating individual metrics.
-
fuzzyHardMetrics() - Compute fuzzy-hard versions of pair-sorting partition metrics
-
fuzzyPartitionMetrics() - Compute fuzzy-fuzzy versions of pair-sorting partition metrics
-
spatialARI() - Spatially aware ARI from Yan, Yinqiao, et al. (2025).
-
fuzzyHardSpotConcordance() - Per-element maximal concordance between a hard and a fuzzy partition
-
fuzzySpotConcordance() - Per-element concordance between two fuzzy partitions
-
getPairConcordance() - Per-element pair concordance score
-
getNeighboringPairConcordance() - Per-element local concordance between a clustering and a ground truth
-
noisy_moon - The noisy moon dataset
-
sp_toys - Toy examples of spatial data
-
toyExamples - Toy embedding examples
-
metric_info - Metrics Information
-
mockData() - Generate mock multidimensional data
-
matchSets() - Match two partitions using Hungarian algorithm
-
knnComposition() - Compute neighborhood composition
-
getFuzzyLabel() - Get fuzzy representation of labels
-
findSpatialKNN() - Find the k nearest spatial neighbors
-
emb2knn() - Computes k nearest neighbors from embedding
-
emb2snn() - Computes shared nearest neighbors from embedding