Compute internal metrics for spatial data
Source:R/getSpatialInternalMetrics.R
getSpatialInternalMetrics.Rd
Computes a selection of internal clustering evaluation metrics for spatial data.
Usage
getSpatialInternalMetrics(
labels,
location,
k = 6,
level = "class",
metrics = c("CHAOS", "PAS", "ELSA"),
...
)
Arguments
- labels
A vector containing the labels to be evaluated.
- location
A numerical matrix containing the location information, with rows as samples and columns as location dimensions.
- k
The size of the spatial neighborhood to look at for each spot. This is used for calculating PAS and ELSA scores.
- level
The level to calculate the metrics. Options include
"element"
,"class"
and"dataset"
.- metrics
The metrics to compute. See details.
- ...
Optional params for
PAS()
.
Details
The allowed values for metrics
depend on the value of level
:
If
level = "element"
, the allowedmetrics
are:"PAS"
,"ELSA"
.If
level = "class"
, the allowedmetrics
are:"CHAOS"
,"PAS"
,"ELSA"
.If
level = "dataset"
, the allowedmetrics
are:"PAS"
: Proportion of abnormal spots (PAS score)"ELSA"
: Entropy-based Local indicator of Spatial Association (ELSA score)"CHAOS"
: Spatial Chaos Score."MPC"
: Modified partition coefficient"PC"
: Partition coefficient"PE"
: Partition entropy
Examples
data(sp_toys)
data <- sp_toys
getSpatialInternalMetrics(data$label, data[,c("x", "y")], k=6, level="class")
#> the specified variable is considered as categorical...
#> class PAS ELSA.Ea ELSA.Ec ELSA CHAOS
#> 1 1 0.008333333 0.07106927 0.1940084 0.06040663 0.2305866
#> 2 2 0.008333333 0.06918805 0.1944579 0.05840334 0.2305866