Per-element maximal concordance between a hard and a fuzzy partition
Source:R/fuzzyPartitionMetrics.R
fuzzyHardSpotConcordance.Rd
Per-element maximal concordance between a hard clustering and hard and fuzzy ground truth labels.
Usage
fuzzyHardSpotConcordance(
hardTrue,
fuzzyTrue,
hardPred,
useNegatives = TRUE,
verbose = TRUE
)
Arguments
- hardTrue
A vector of true cluster labels
- fuzzyTrue
A object coercible to a numeric matrix with membership probability of elements (rows) in clusters (columns). Must have the same number of rows as the length of
hardTrue
.- hardPred
A vector of predicted cluster labels
- useNegatives
Logical; whether to include negative pairs in the concordance score (tends to result in a larger overall concordance and lower dynamic range of the score). Default TRUE.
- verbose
Logical; whether to print expected memory usage for large datasets.
Examples
# generate a fuzzy truth:
fuzzyTrue <- matrix(c(
0.95, 0.025, 0.025,
0.98, 0.01, 0.01,
0.96, 0.02, 0.02,
0.95, 0.04, 0.01,
0.95, 0.01, 0.04,
0.99, 0.005, 0.005,
0.025, 0.95, 0.025,
0.97, 0.02, 0.01,
0.025, 0.025, 0.95),
ncol = 3, byrow=TRUE)
# a hard truth:
hardTrue <- apply(fuzzyTrue,1,FUN=which.max)
# some predicted labels:
hardPred <- c(1,1,1,1,1,1,2,2,2)
fuzzyHardSpotConcordance(hardTrue, fuzzyTrue, hardPred)
#> [1] 0.87750 0.87625 0.87625 0.87750 0.87875 0.87750 0.76625 0.02750 0.76625