Skip to contents

Per-element local concordance between a clustering and a ground truth

Usage

getNeighboringPairConcordance(
  true,
  pred,
  location,
  k = 20L,
  useNegatives = FALSE,
  distWeights = TRUE,
  BNPARAM = NULL
)

Arguments

true

A vector of true class labels

pred

A vector of predicted clusters

location

A matrix or data.frame with spatial dimensions as columns. Alternatively, a nearest neighbor object as produced by findKNN.

k

Approximate number of nearest neighbors to consider

useNegatives

Logical; whether to include the concordance of negative pairs in the score (default FALSE).

distWeights

Logical; whether to weight concordance by distance (default TRUE).

BNPARAM

A BiocNeighbors parameter object to compute kNNs. Ignored unless the input is a matrix or data.frame. If omitted, the Annoy approximation will be used if there are more than 500 elements.

Value

A vector of concordance scores

Examples

data(sp_toys)
data <- sp_toys
getNeighboringPairConcordance(data$label, data$p1, data[,c("x", "y")], k=6)
#>   [1] 1.0000000 1.0000000 1.0000000 0.7500000 0.2500000 0.5000000 1.0000000
#>   [8] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
#>  [15] 1.0000000 1.0000000 1.0000000 1.0000000 0.6666667 0.3333333 0.6666667
#>  [22] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
#>  [29] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 0.6666667
#>  [36] 0.3333333 0.6666667 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
#>  [43] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
#>  [50] 0.6666667 0.3333333 0.6666667 1.0000000 1.0000000 1.0000000 1.0000000
#>  [57] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
#>  [64] 1.0000000 1.0000000 0.6666667 0.3333333 0.6666667 1.0000000 1.0000000
#>  [71] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
#>  [78] 1.0000000 1.0000000 1.0000000 0.6666667 0.3333333 0.6666667 1.0000000
#>  [85] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
#>  [92] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 0.6666667 0.3333333
#>  [99] 0.6666667 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
#> [106] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 0.6666667
#> [113] 0.3333333 0.6666667 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
#> [120] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
#> [127] 1.0000000 0.6666667 0.3333333 0.6666667 1.0000000 1.0000000 1.0000000
#> [134] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
#> [141] 1.0000000 1.0000000 0.6666667 0.3333333 0.6666667 1.0000000 1.0000000
#> [148] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
#> [155] 1.0000000 1.0000000 1.0000000 1.0000000 0.6666667 0.3333333 0.6666667
#> [162] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
#> [169] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 0.6666667 0.3333333
#> [176] 0.6666667 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
#> [183] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
#> [190] 0.6666667 0.3333333 0.6666667 1.0000000 1.0000000 1.0000000 1.0000000
#> [197] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
#> [204] 1.0000000 0.6666667 0.3333333 0.6666667 1.0000000 1.0000000 1.0000000
#> [211] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
#> [218] 1.0000000 1.0000000 1.0000000 0.6666667 0.3333333 0.6666667 1.0000000
#> [225] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
#> [232] 1.0000000 1.0000000 1.0000000 1.0000000 0.5000000 0.2500000 0.7500000
#> [239] 1.0000000 1.0000000