Computes embedding-based metrics for the specified level.
Usage
getEmbeddingMetrics(
x,
labels,
metrics = c("meanSW", "minSW", "pnSW", "dbcv"),
distance = "euclidean",
level = "class",
...
)
Arguments
- x
A data.frame or matrix (with features as columns and items as rows) from which the metrics will be computed.
- labels
A vector containing the labels of the predicted clusters. Must be a vector of characters, integers, numerics, or a factor, but not a list.
- metrics
The metrics to compute. See details.
- distance
The distance metric to use (default euclidean).
- level
The level to calculate the metrics. Options include
"element"
,"class"
and"dataset"
.- ...
Optional arguments. See details.
Details
The allowed values for metrics
depend on the value of level
:
If
level = "element"
, the allowedmetrics
are:"SW"
.If
level = "class"
, the allowedmetrics
are:"meanSW"
,"minSW"
,"pnSW"
,"dbcv"
.If
level = "dataset"
, the allowedmetrics
are:"meanSW"
,"meanClassSW"
,"pnSW"
,"minClassSW"
,"cdbw"
,"cohesion"
,"compactness"
,"sep"
,"dbcv"
.
The function(s) that the optional arguments ...
passed to depend on the
value of level
:
If
level = "element"
, optional arguments are passed tostats::dist()
.If
level = "class"
, optional arguments are passed todbcv()
.If
level = "dataset"
, optional arguments are passed todbcv()
orCDbw()
.